
euforia: Complete Software Model Checking
with Uninterpreted Functions

Denis Bueno and Karem A. Sakallah

{dlbueno,karem}@umich.edu
University of Michigan

Abstract. We introduce and evaluate an algorithm for an ic-style soft-
ware model checker that operates entirely at the level of equality with
uninterpreted functions (EUF). Our checker, called euforia, targets con-
trol properties by treating a program’s data operations/relations as unin-
terpreted functions/predicates. This results in an EUF abstract transition
system that euforia analyzes to either (1) discover an inductive strength-
ening EUF formula that proves the property or (2) produce an abstract
counterexample that corresponds to zero, one, or many concrete coun-
terexamples. Infeasible counterexamples are eliminated by an efficient re-
finement method that constrains the EUF abstraction until the property
is proved or a feasible counterexample is produced. We formalize the EUF
transition system, prove our algorithm correct, and demonstrate our re-
sults on a subset of benchmarks from the software verification competition
(SV-COMP) 2017.

1 Introduction

Control properties are an integral part of software verification. The 2014 Apple
Secure Transport “goto fail” bug [1] provides a compelling illustration:

extern int f();

int g() {

int ret = 0;

/* ... */

goto out; /* this line was inadvertently added */

ret = f();

out:

return ret;

}

In this simplified version of the bug, the function f() implements a security check
that returns 0 on success. g() is supposed to call f(); however, f() is never called
because there is an (inadvertent) jump directly to g()’s return statement. To prove
the absence of this bug, one would like to verify the property that every success path
actually calls f() (i.e., that f() is called whenever g() returns 0). This property
does not require reasoning precisely about what f()does with data; it only requires
reasoning about control paths. Consequently, this property is a control property.

2 Denis Bueno et al.

A variety of important properties are control properties. For instance, many
operating systems require that secure programs drop elevated privileges as soon
as those privileges are no longer needed. Such a rule is a control property because
it has little to do with details about particular privileged operations. Instead,
the rule only requires reasoning about when privilege drops occur relative to the
unprivileged parts of a program [2]. Similarly, verifying a locking discipline does
not require reasoning about the data being protected; it only requires reasoning
about when locking and unlocking occurs relative to when data is accessed or
modified [3]. Typestate properties [4] are also control properties.

The typical approach for verifying control properties is predicate abstraction [5,
6], which casts the state space of a program into a Boolean space defined by a set
of predicates over program variables. The primary challenge with predicate ab-
straction lies in the selection of predicates. All of the necessary information about
data and control must be inferred using a finite set of predicates. Searching the
predicate space has an exponential cost because adding a new predicate doubles
the size of abstract state space. To make matters worse, predicate abstraction does
not directly abstract operations, which can lead to time-consuming solver queries
for complex operations – even though many complex operations are irrelevant for
control properties.

Instead, we propose a more direct abstraction. Rather than projecting program
state onto an interpreted predicate space, we syntactically abstract it into a set of
constraints over the theory of equality with uninterpreted functions (EUF). This
means that our abstraction can happen at the operation level (e.g., addition, sub-
traction, comparison, etc.) reducing the complexity of queries sent to the solver.
Moreover, EUF reduces the number of bits in the search space (by abstracting bit
vector terms), and has efficient implementations. The Averroes verifier [7] showed
that such an approach works well for checking control properties in hardware
designs.

This paper adapts ic-style model checking with EUF abstraction to software.
We find this gives performance benefits by reducing the number of refinement iter-
ations in a counter-example-guided abstraction refinement (CEGAR) [8, 9] loop,
while keeping the Boolean state space smaller. We make the following contribu-
tions:

– euforia, a ground-up implementation of a complete software model checking
algorithm inspired by Averroes (Section 3);

– detailed descriptions of euforia’s novel cube expansion method (Section 3.1)
and refinement (Section 3.2), including new proofs of correctness and termi-
nation for finite state systems (Section 3.3),

– experimental evaluation on 752 from SV-COMP ’17 (Section 4), showing that
euforia outperforms a related predicate abstraction algorithm, icia [10],
on control property benchmarks.

euforia: Complete Software Model Checking with Uninterpreted Functions 3

2 Software Data Abstraction

Our goal is safety verification: showing that all reachable states of a program are
safe, or producing a counterexample test case. Kesten and Pnueli [11] made a
distinction between control abstraction and data abstraction: while the former
abstracts observations of computation sequences, the latter abstracts data values.
We are targeting properties that involve verifying the control flow of a program,
not its data, and thus we focus on abstracting data values using EUF theory.

This section describes the logic of EUF, how we represent a program (precisely)
as a concrete transition system, and how we create an (over-approximate) abstract
transition system from that concrete transition system.

2.1 Background

Equality with Uninterpreted Functions Our setting is standard quantifier-free,
first-order logic (FOL) with the standard notions of theory, satisfiability, validity,
entailment, and models. Inspired by Kroening’s presentation in [12], we begin with
a review of the EUF logic. The EUF logic grammar is presented here:

non-terminal production explanation

term ::= x | y | z | · · · 0-arity term, sans serif face
| F(term1, term2, . . . , termn) uninterpreted function (UF)
| ITE(formula, term1, term2) if-then-else

atom ::= term1 = term2 equality atom
| x | y | z | · · · Boolean atom
| P(term1, term2, . . . , termn) uninterpreted predicate (UP)

formula ::= atom
| ¬atom negation
| formula1 ∧ formula2 conjunction
| formula1 ∨ formula2 disjunction

Atomic formulas (atoms) are made up of Boolean identifiers, uninterpreted predi-
cates (UPs), and (possibly-negated) equalities between terms. Formulas are made
up of terms combined with arbitrary Boolean structure. For simplicity, but with-
out loss of generality, we only consider formulas in negation normal form. A literal
is a (possibly-negated) atom containing no occurrences of ITE. A clause is a dis-
junction of literals. A cube is a conjunction of literals. a |= b means that a entails
b. We write uninterpreted objects – terms x, functions F, and predicates P – in
sans serif face. The semantics of these formulas is standard.

Transition Systems The front-end of our checker euforia translates a C pro-
gram into a bit-precise transition system. A transition system [13, 14] is a tuple
(X,Y, I, T) consisting of a (non-empty) set of state variables X = {x1, . . . , xn},
a (possibly empty) set of input variables Y = {y1, . . . , ym}, and two formulas: I,
the initial states, and T , the transition relation. Formulas over state variables are
identified with the sets of states they denote; for example, the formula (x1 = x2) de-
notes all states where x1 and x2 are equal, and other variables may have any value.

4 Denis Bueno et al.

The set of next-state variables is X ′ = {x′1, x′2, . . . , x′n}. For a formula σ, the set
Vars(σ) denotes the set of state variables free in σ (respectively, Vars′(σ) denotes
set of next-state variables in σ). We may write σ as σ(X) when we wish to empha-
size that the free variables in σ are drawn solely from the setX, i.e., Vars(σ(X)) ⊆
X. Any formula σ(X ′) (also written σ′) refers to the result of substituting for the
current-state variables in σ(X) with the corresponding next-state variables from
X ′, e.g., (x1 = x2)′ is (x′1 = x′2). The system’s transition relation T is a formula

T (X,Y,X ′) ≡
∧

16i6n

(x′i = fi (X,Y)) (1)

where fi (X,Y) is a term denoting the next-state function for xi ∈ X.

We write σ(X)
T−→ ω(X) if each state in σ transitions to some state in ω under

T , i.e., σ ∧ T |= ω′. An execution of a transition system is a (possibly-infinite)

sequence of transitions σ0(X)
T−→ σ1(X)

T−→ σ2(X), . . . such that σ0(X) |= I(X).
A safety property is specified by a predicate,P (X). The model checking problem

is to check whether any state satisfying ¬P (X) is reachable through an execution
of T . A counterexample to a safety property P (X) is a k-step execution such that
σk(X) |= ¬P (X).

A concrete transition system (CTS) is defined over bit vector state variables
and operations in the quantifier-free logic of bit vectors (QF_BV from SMT-LIB [15]).
euforia encodes a C program into a CTS using standard methods [16, 17].

2.2 EUF Transition Systems

Inspired by the work of Burch & Dill [18] for microprocessor verification, our
approach is to abstract a program’s concrete operations (resp. conditions) by un-
interpreted functions (resp. predicates), and to replace constants by 0-arity terms
(Kroening also gives a detailed overview of EUF abstraction [12], pp. 61ff). Con-
crete constants (e.g., 1,−3) are represented as unique uninterpreted 0-arity terms
(K1,K-3); data operations such as addition, division, and bit-extraction are repre-
sented with correspondingly-named UFs; relational operators are represented as
UPs; and bit-vector variables x are represented by 0-arity terms x̂, and given a hat
to distinguish them from constants. Boolean variables are represented directly in
EUF. We abstract P into P̂ and I into Î in the same way as other formulas. For
example, using state variables X = {x, a}, we represent the transition relation

T (X,∅, X ′) ≡ (x′ = ITE(x > a, x, 1 + a)) ∧ (a′ = x) as T̂ (X̂,∅, X̂ ′) ≡ (x̂′ =

ITE(GT(x̂, â), x̂,ADD(K1, â))) ∧ (â′ = x̂), over state variables X̂ = {x̂, â}.
This abstraction can be formally defined by an abstraction function AJ·K

that performs a linear-time, syntax-directed, structure-preserving transforma-
tion of the CTS (described in [12]). The resulting abstract transition system

(ATS) (X̂, Ŷ , Î, T̂) consists of state variables X̂ = {x̂1, x̂2, . . . , x̂n}, input vari-

ables Ŷ = {ŷ1, ŷ2, . . . , ŷm}, initial state Î, and transition relation T̂ defined by n

next-state terms f̂1(X̂, Ŷ), . . . , f̂n(X̂, Ŷ) according to:

T̂ (X̂, Ŷ , X̂ ′) ≡
∧

16i6n

(
x̂′i = f̂i(X̂, Ŷ)

)
(2)

euforia: Complete Software Model Checking with Uninterpreted Functions 5

Abstract formulas over-approximate their concrete counterparts. Recovering the
concrete formulas is easy: 0-arity terms (which stand for concrete constants and
variables) are mapped to their concrete countererparts; UFs and UPs are mapped
to their concrete operations by name. Consider a concrete formula σ(X) and its

EUF abstraction σ̂(X̂). The relation of the concrete and abstract systems is |=
σ̂ =⇒|= σ: the concretization σ of any valid EUF formula σ̂ is valid [12]. Therefore,
if the abstract system cannot reach an unsafe state, then the concrete system will
also never reach it. A concrete state is a complete assignment to bit vector and
Boolean variables. An abstract state is a pair 〈π,A〉where π is a partition of all the
terms in the ATS andA is a complete assignment to the UPs and Boolean variables.

The EUF abstraction partitions the set of all concrete states. Each concrete
state is represented by a single abstract state but abstract states may represent
zero, one, or many concrete states. For instance, given a transition system with
one 32-bit integer state variable, x, and a single transition equation,

x′ = 1 + x concrete transitions

x̂′ = ADD(K1, x̂) abstract transitions

the abstract state space is defined over the term set {x̂,K1,ADD(K1, x̂)} and con-
sists of the following 5 states and their corresponding concrete states:1

Abstract state/partition Concrete state(s)
π1 = {x̂ | K1 | ADD(K1, x̂)} x 6= 1 and x 6= 0
π2 = {x̂,ADD(K1, x̂) | K1} ∅ (infeasible)
π3 = {x̂ | K1,ADD(K1, x̂)} x = 0
π4 = {x̂,K1 | ADD(K1, x̂)} x = 1
π5 = {x̂,K1,ADD(K1, x̂)} ∅ (infeasible)

We should note that while the CTS is deterministic, the abstraction causes the
ATS to be non-deterministic.

3 euforia: Model Checking EUF Transition Systems

euforia builds on the model checker ic [19] by extending it to EUF and wrap-
ping it inside a CEGAR loop that refines the abstract transition system. The
algorithm’s main novelties are that it checks an entirely uninterpreted transition
system, is guaranteed to terminate, and refines spurious counterexamples auto-
matically. Our implementation is most closely related to pdr (Property Directed
Reachability) [20], a popular variant of ic.

euforia’s entry point is given in Figure 1. We highlight algorithm components
that euforia introduces. As in ic, the central object in euforia is an iteratively-
deepened sequence of reachable sets, Ri, each denoting an over-approximation of
the set of states reachable in i transitions. The algorithm maintains the following

1 Vertical bars delineate the cells of a partition

6 Denis Bueno et al.

euforia(I, T, P):
Globals:

N current depth
Fi set of cubes, i ∈ {0, 1, . . . , N,N + 1} (FN+1 = F∞)

Ri ≡
∧N+1

j=i

∧
ĉ∈Fj

¬ĉ reachable set (over-approximate)

1: Î , T̂ , P̂ ← abstract(I, T, P) . construct abstract transition system
2: N = 0 . initialize global variables
3: push F∞ = true, push F0 = {Î(X̂)} . assume I is a cube
4: while true do
5: if ∃ŝ |= RN ∧ ¬P̂ and BackwardReachability(ŝ) is true then
6: if RefineCounterexample() is true then . found counterexample

7: return BuildCounterexample()

8: else
9: N ← N + 1, add new frame FN = true

10: if Propagate() is true then . found inductive invariant
11: return true

Fig. 1.Entry point to euforia. I,T , andP define a model checking problem. Backward
reachability is performed until it converges or discovers an abstract counterexample,
which may trigger a refinement. BuildCounterexample() constructs a concrete pro-
gram trace from a feasible abstract counterexample. Ri is a global definition in terms
of the individual frames, stored in F .

invariants:

R0 = Î(X̂) (3)

Ri |= Ri+1 (4)

Ri |= P̂ (X̂) (i < N) (5)

Ri+1 over-approximates the image of Ri (6)

Initially euforia abstracts the concrete transition system and then loops over
three distinct phases: backward reachability (Figure 2), forward propagation (Fig-
ure 3), and refinement (Figure 6). This section will discuss the first two phases;
refinement is discussed in Section 3.2.

Backward reachability (Figure 2) attempts to prove that the property holds
for N transitions or to construct a counterexample. It manages a queue of proof
obligations that represent potential executions to ¬P̂ . At each iteration, it chooses
a proof obligation pair 〈ŝ, i〉 and performs a counterexample-to-induction (CTI)
query to see if cube ŝ′ is reachable from the current i-step over-approximation
(lines 2–6). If so, our new procedure ExpandPreimage (Section 3.1) generalizes
the pre-state and adds it to the queue (lines 6–9). Otherwise, it generalizes the
unreachable cube ŝ to refine the reachability frames (lines 11–14). Note that this
over-approximation and refinement is a standard part of ic and is independent
of our EUF abstraction and refinement.

euforia: Complete Software Model Checking with Uninterpreted Functions 7

BackwardReachability(ŝ):

Precondition: cube ŝ |= ¬P̂

1: push 〈ŝ, N〉 onto Q
2: while 〈ŝ, i〉 ← pop from Q do . states ŝ reach bad state
3: if i = 0 then
4: return true . found abstract counterexample

5: if ŝ ∧Ri is SAT then . ŝ might be reached in i transitions
6: if ¬ŝ ∧Ri−1 ∧ T̂ ∧ ŝ′ has model M then
7: ẑ ← ExpandPreimage(ŝ′,M) . ẑ reaches ŝ in one step
8: push 〈ẑ, i− 1〉 onto Q . new part of partial counterexample
9: push 〈ŝ, i〉 onto Q . may still be reachable

10: else . ŝ is inductive relative to ¬ŝ ∧ R̂i−1

11: 〈ẑ,m〉 ← GeneralizeBlockedCube(〈ŝ, i〉) . m ≥ i

12: while m < N − 1 and ¬ẑ ∧Rm−1 ∧ T̂ ∧ ẑ′ is UNSAT do
13: 〈ẑ,m〉 ← GeneralizeBlockedCube(〈ẑ,m〉) .

attempt to block at later frame

14: AddBlockedCube(〈ẑ,m〉)
15: if m < N then
16: push 〈ẑ,m + 1〉 onto Q . may still be reachable at m + 1

17: return false

AddBlockedCube(〈ŝ, i〉):

1: for j ∈ {1, 2, . . . , i} do . test whether ŝ subsumes a cube in an earlier frame
2: if ŝ ⊆ ĉ for any ĉ ∈ Fj then
3: Fj ← Fj \ {ĉ}
4: Fi ← Fi ∪ {ŝ} . record that ŝ is unreachable in i steps

Fig. 2. Proof obligations are represented as an abstract cube and frame index pair, 〈ŝ, i〉.
The proof obligation queue, Q, is a priority queue that orders cubes by frame index
(earliest first) and breaks ties arbitrarily.

Propagate():

1: for i ∈ {1, 2, . . . , N − 1} do . Propagate at level i
2: for ŝ ∈ Fi do
3: if Ri ∧ T̂ ∧ ŝ′ is UNSAT then . ŝ is blocked at Fi+1 or later
4: m← maximum in {i + 1, i + 2, . . . , N + 1} at which ŝ is blocked
5: AddBlockedCube(〈ŝ,m〉) . propagate cube ŝ to Fm

6: if Fi is empty then
7: return true . invariant found
8: return false

Fig. 3. Just prior to this phase of euforia, RN |= P̂ . N is incremented and then Prop-
agate is called. In line 4, it is possible that a cube is blocked beyond the next frame
(i + 1). euforia examines the unsat core given by the solver to see which frames were
used in order to calculate m.

8 Denis Bueno et al.

Forward propagation (Figure 3) pushes unreachable cubes forward, attempt-
ing to extend them over more transitions (lines 1–5). On line 6, if two (over-
approximate) reachable sets become identical Ri = Ri+1 (i < N), the algorithm
terminates having discovered an inductive invariant that proves the property by
equation (5).

Generalizing Unsatisfiable CTI Queries If the CTI query (line 6 of Figure 2) is
unsatisfiable, then state ŝ is unreachable in i transitions. We want to generalize
ŝ by finding a set of states (a cube) m̂ ⊇ ŝ that is unreachable and covers more
states than ŝ, if possible. We use a simple greedy scheme for finding a minimal
unsatisfiable set that is given in Figure 4.

GeneralizeBlockedCube(〈ŝ, i〉):
1: t̂← ŝ, j ← i
2: for l̂ ∈ ŝ do
3: m̂← t̂ \ l̂ . test if m̂ unreachable if literal l̂ removed

4: if m̂ 6|= I(X̂) and ¬m̂ ∧Rj−1 ∧ T̂ ∧ m̂′ is UNSAT then
5: j ← frame ≥ j at which m̂ is still blocked
6: t̂← m̂ . literal l̂ was not necessary

7: return 〈t̂, j〉

Fig. 4. Generalized blocked cube procedure. euforia, like pdr, examines the unsat
core of the query on line 4 in order to implement line 5.

3.1 Generalizing Satisfiable Counterexample-to-induction Queries

If the CTI query (line 6 of Figure 2) is satisfiable, euforia generalizes (expands)
the preimage state to a cube that includes many states that satisfy the query. The
purpose of generalization is efficiency: a bad state is often reached by many states
and it is usually more efficient to find counterexamples if state sets contain as
many states as possible.

Example 1. Consider the following transition relation on variables X̂ = {x̂1, x̂2}:

x̂′1 = f1 where f1 = ITE(x̂1 = x̂2,ADD(x̂1,K1),SUB(x̂1,K3)) (7)

x̂′2 = f2 where f2 = x̂1 (8)

Consider a proof obligation cube ŝ′ ≡ GT(x̂′1, x̂
′
2) and a model consisting of

partition {x̂1, x̂2, x̂′2 | K1,ADD(x̂1,K1), x̂′1 | K3,SUB(x̂1,K3)} and assignment
GT(x̂1, x̂2) ∧ GT(x̂′1, x̂

′
2). euforia performs a cone-of-influence (COI) traversal

on f1 and f2 to find relevant constraints, terms, and variables; in this case, it finds
the constraint (x̂1 = x̂2), as well as terms K1,ADD(x̂1,K1), and variables x̂1, x̂2.
It does not find the SUB(· · ·) term because it only traverses the true branch of the
ITE. Relating these constraints, terms, and variables according to the model yields

euforia: Complete Software Model Checking with Uninterpreted Functions 9

ExpandPreimage(ŝ′,M):

1: C ← ∅ . set of constraints
2: for x̂′i ∈ Vars′(ŝ′) do

3: c← COI(fi(X̂, Ŷ),M) . traverse fi to collect M -relevant constraints
4: C ← C ∪ c
5: ĝ ← restrict model M to variables, terms, and predicates in C
6: return ĝ

Fig. 5. Pre-image generalization procedure. M is the model for the CTI query.
COI(f,M) is a model-based cone of influence traversal.

our generalized pre-image cube: (x̂1 = x̂2) ∧ (ADD(x̂1,K1) = K1) ∧ (x̂1 6= K1).
This has the effect of generalizing away the predicate GT(x̂1, x̂2). We omit the COI
traversal details due to space constraints and because it is relatively straightfor-
ward: for each variable x̂′i ∈ Vars′(ŝ′), its next-state formula fi(X,Y) is traversed,
collecting constraints required to satisfy the model. Then those constraints are
used to form the pre-state cube.

euforia’s expansion procedure, given in Figure 5, has two key properties: (1)

it projects only onto constraints from T̂ and (2) it exploits the fact that T̂ repre-
sents each next-state relation as a function in order to perform a COI traversal on
each next-state function fi(X,Y). This allows us to omit irrelevant state variables
and constraints. Property (1) is important for guaranteeing termination and (2)
is important for efficiency.

CTI expansion is common to many ic-style checkers. ctigar [21] generalizes
by examining the unsatisfiable core of a query that is unsatisfiable by construc-
tion: it asks whether a state has, under the same inputs, some other successor than
the reached one [21]. euforia can’t use this method to generalize because such a
query may be satisfiable over EUF (due to the non-deterministic nature of UFs).
pdr performs generalization using ternary simulation at the bit level, which is not
suitable for the word-level EUF abstract transition system. Other checkers have
explored theory-specific generalization methods, such as for linear arithmetic [22,
23] and for polyhedra [24]. Yet other checkers generalize by calculating the weak-
est precondition for the proof obligation [25, 7]. Weakest preconditions (WP) are
particularly problematic for EUF, as iterated applications of WP can cause EUF
terms to grow arbitrarily large, leading to potential non-termination of EUF ab-
stract reachability.

3.2 Refinement

When BackwardReachability finds an abstract counterexample, it must be
checked for feasibility, potentially refining the abstract state space. An n-step ab-

stract counterexample (ACX) is an execution Â0
T̂∧Ŷ0−−−→ Â1

T̂∧Ŷ1−−−→ · · · T̂∧Ŷn−2−−−−−→

Ân−1
T̂∧Ŷn−1−−−−−→ Ân where each Âi (0 ≤ i ≤ n) is a state cube and Ŷi (0 ≤ i < n)

10 Denis Bueno et al.

is a cube constraining input variables. An abstract formula σ̂ is feasible if its con-
cretization σ is satisfiable over QF_BV. The ACX is spurious for any of the following
reasons:

1. Ai is infeasible for some i, i.e., there are no concrete states that correspond to
the abstract state cube Âi; or

2. Ai−1 ∧ Yi−1 ∧ T ∧ Ai is unsatisfiable for some i, i.e., there are no concrete
transitions that correspond to the abstract state transition; or

3. the concretized counterexample is discontinuous. This will happen if all con-
cretized cubes and transitions are feasible but the transitions “land” on dis-
tinct concrete states in a concretized cube. Below, the circles represent concrete
cubes and the dots represent concrete states:

1k
A - k

A 1k
A +

1k
Y -

k
Y

Discontinuous concrete counterexample

Figure 6 shows euforia’s refinement algorithm. RefineCounterexample first
performs feasibility checks on individual transitions to address reasons 1 and 2
(Figure 6a, lines 1–8), afterward performing symbolic simulation on the counterex-
ample path to address reason 3 (Figure 6b). If the counterexample is spurious, one
of these feasibility checks will find an unsatisfiable subset of constraints. Learn-
Lemma creates a refinement lemma by abstracting the unsatisfiable subset and
asserting its negation in T̂ .

The details of forward refinement are fiddly but the idea is simple: to deter-
mine if the counterexample is feasible, symbolically simulate the program along
the concretized counterexample path. Beginning in the initial state, our imple-
mentation iteratively computes the next state in a manner reminiscent of image
computation in BDD-based symbolic model checking. Note that there is no path
explosion during this process because we only follow the path denoted by the con-
crete counterexample. If a contradiction is reached, then an unsatisfiable subset
is found and used to learn a lemma.

Specifically, RefineForward (Figure 6b) represents a symbolic state si as
a pair 〈vi, pci〉 where vi represents a map of state variables to values, and pci is
the path constraint represented as a set of cubes. One transition at a time, it asks
whether the next transition in the abstract counterexample is concretely feasi-
ble. If it is, Simulate (Figure 6c) computes the next state symbolically, in two
steps: (1) updating variable assignments by symbolically evaluating each next-
state function in T (as was done during cube expansion, Section 3.1), (2) updating
the path constraint with any new input constraints, and (3) uniquely renaming all
input variables. The notation fi[X/vi−1] denotes the simultaneous substitution of
state variables in X for their values from vi−1 in fi. For a formula g with model
M , g ↓M simplifies g to a literal (by removing any complex Boolean logic) using
the model M , similar to our COI procedure (see Section 3.1).

As we have said, the symbolic formula created by this process represents a
single execution path through the program being analyzed, with inputs remaining

euforia: Complete Software Model Checking with Uninterpreted Functions 11

RefineCounterexample(Â0
T̂∧Ŷ0−−−→ Â1

T̂∧Ŷ1−−−→ · · ·
T̂∧Ŷn−2−−−−−→ Ân−1

T̂∧Ŷn−1−−−−−→ Ân):

1: if n = 1 then
2: if A0 is UNSAT, with unsat core c then . check for 0-step counterexample
3: LearnLemma(c)
4: return false
5: for i ∈ {1, 2, 3, . . . , n} do . test cubes and transitions
6: if Ai−1 ∧ T ∧ Yi−1 ∧Ai is UNSAT, with unsat core c then
7: LearnLemma(c)
8: return false
9: return RefineForward()

(a) Refinement entry point

RefineForward() :

1: if I ∧A0 is UNSAT, with unsat core c then . check initial state
2: LearnLemma(c)
3: return false
4: s1 ← 〈concrete assignment for each state variable, {}〉
5: for i ∈ {2, 3, . . . , n} do . test cubes and transitions
6: if vi−1 ∧ pci−1 ∧ T ∧ Yi−1 ∧A′i is UNSAT, with unsat core c then
7: LearnLemma(c)
8: return false
9: si ← Simulate(M, si−1, T, Yi−1, Ai) . M is the model for the query

10: return true . feasible counterexample

(b) Symbolically simulate counterexample

Simulate(M, 〈vi−1, pci−1〉, T, Yi−1, Ai) :

1: v ← empty map
2: for xi ∈ X do
3: update v with value fi[X/vi−1] ↓M . substitute last values, simplify with M

4: pc← Yi−1 ∪ {l[X/v] | l ∈ Ai and l[X/v] contains inputs}
5: return 〈RenameInputs(v),RenameInputs(pc)〉

(c) Steps a symbolic state si−1 = 〈vi−1, pci−1〉 forward one step by updating values (v)
and path constraint (pc) using T

LearnLemma(c) :

1: ĉ← AbstractAndNormalize(c) . abstract and eliminate input variables
2: if c contains no inputs then
3: if Vars(c) ⊆ X then . only present-state vars

4: Simplify and add lemma ¬ĉ(X̂ ′)
5: if Vars(c) ⊆ X ′ then . only next-state vars

6: Simplify and add lemma ¬ĉ(X̂)

7: Simplify and add lemma ¬ĉ
(d) Learns a lemma by abstracting the concrete core c and conjoining ĉ to T̂

Fig. 6. euforia’s refinement procedure, RefineCounterexample

12 Denis Bueno et al.

symbolic. If this formula is found to be unsatisfiable, then it is desirable to find
an equivalent formula without symbolic input variables. A full-fledged quanti-
fier elimination procedure is computationally expensive. Instead, LearnLemma
(Figure 6d) calls AbstractAndNormalize, which (1) performs some simple
equality propagation (which often will eliminate the inputs) and (2) otherwise
under-approximates by substituting for each input variable the last concrete value
that was assigned during symbolic simulation.

euforia’s refinement lemmas fall into two categories: (1) one-step lemmas
learned during individual transition checks (lines 1–8 in Figure 6a); and (2) forward
lemmas learned during the symbolic simulation of the concrete counterexample
(Figure 6b). The key fact is that one-step lemmas do not increase the size of the ab-
stract state space; they merely constrain existing terms, similar to a blocking clause
in ic. One-step lemmas constrain the behavior of uninterpreted objects to be con-
sistent with their concrete semantics, i.e., partially interpreting the uninterpreted
operations. Forward lemmas, on the other hand, increase the size of the abstract
state space, similar to predicates added by refinement in predicate abstraction.

There are many options for performing feasibility checks and deriving suit-
able refinements from them if one or more of them fail (e.g., [26–28]). We chose
this refinement procedure because our focus is on assessing the suitability of EUF
abstraction for control properties, and because it’s simple.

3.3 Proof of Correctness

First, we prove that reachability for EUF transition systems terminates. Second,
we show that euforia’s refinement will increase the fidelity of the abstract system
until it represents all concrete states exactly. Since the concrete system is finite,
euforia must eventually terminate.

Theorem 1. BackwardReachability terminates with an answer of true or
false.

Proof. Our proof relies on two facts: (1) the number of models for an abstract
transition system is finite and (2) euforia searches among these models only,
eventually blocking all of them or producing an abstract counterexample.

The set of possible models for a given abstract transition system T̂ is finite.
In fact, if the system has k Boolean state variables and n terms, then the number
of Herbrand models is bounded by 2k · Bn, where 2k is the number of possible
Boolean assignments to k Boolean variables andBn =

∑n
i=0 S(n, i) is the number

of ways to partition n objects into disjoint sets (the Bell number). S(n, i) is the
number of ways to partition a set of n objects into i non-empty subsets (Stirling
number of the second kind).

euforia’s preimage generalization procedure, ExpandPreimage (Figure 5),
searches only among this bounded set of models, since it explicitly uses only
terms from T̂ to construct its preimage cube. If a cube is subsequently blocked
by GeneralizeBlockedCube (Figure 4), those models will be infeasible. As
there are finitely many models and frames, eventually all cubes will be blocked
and BackwardReachability will terminate.

euforia: Complete Software Model Checking with Uninterpreted Functions 13

Theorem 2. euforia’s refinement procedure increases the fidelity of the abstract
transition system (ATS), up to expressing all concrete QF_BV behavior.

Proof. One-step lemmas do increase the fidelity of the ATS but do not increase
the number of terms in the ATS. RefineForward may increase the number of
terms in the ATS, resulting in an increased state space. If the state space size could
grow without bound, euforia would potentially not terminate.

We first show that we can guarantee termination by using a refinement method
simpler than RefineForward. This method learns a lemma from a single con-

crete path. Recall that ann-step abstract counterexample is an execution Â0
T̂∧Ŷ0−−−→

Â1
T̂∧Ŷ1−−−→ · · · T̂∧Ŷn−2−−−−−→ Ân−1

T̂∧Ŷn−1−−−−−→ Ân where each Âi is an abstract state cube

(0 ≤ i ≤ n) and Ŷi is an abstract formula constraining input variables (0 ≤ i < n).
Beginning in any single state σ0 ∈ A1 ∧ I, for all 1 ≤ i ≤ n,

1. Check whether σi−1 ∧ T ∧ Yi−1 ∧A′i is satisfiable.
2. If so, form new state σi using the concrete assignments to all variables X ′

3. If not, call LearnLemma(c) where c is the unsat subset of the query (1.)

When step 1 is not satisfiable, this procedure will introduce a new abstract constant
(from state σi−1) and a new abstract UF/UP constraint (due to the transition to
A′i) on that constant. The number of constants is bounded by the size of bit vector
words in the concrete transition system and the number of constraints is as well
(up to modeling every concrete behavior of every UF/UP in the program).

RefineForward (Section 3.2) is essentially the same as this procedure, ex-
cept RefineForward attempts to generate stronger lemmas that refute multiple
spurious concrete paths at once.

4 Evaluation

euforia is implemented in 13,700 lines of C++. It uses LLVM 5.0.1 as front-end
for processing C programs, running various optimizations including inlining, dead
code elimination, and promoting memory to registers. It uses Z3 4.5.0 [29] for EUF
solving during backward reachability and Boolector 2.0 [30] for QF_BV solving dur-
ing refinement. euforia cannot yet process programs with memory allocation or
recursion. euforia also assumes that C programs do not exhibit undefined be-
havior (signed overflow, buffer overflow, etc.), and may give incorrect results if the
input program is ill-defined.

We evaluated euforia on 752 benchmarks containing safety property asser-
tions from the SV-COMP’17 competition [31]. 516 are safe and 236 are unsafe.
We ran all the benchmarks on 2.6 GHz Intel Sandy Bridge (Xeon E5-2670) ma-
chines with 2 sockets, 8 cores with 64GB RAM. Each benchmark was assigned
to one socket during execution and was given a one hour timeout. All the bench-
marks are C programs in the ReachSafety-ControlFlow, ReachSafety-Loops, and
ReachSafety-ECA sets. Although these sets contain 1,451 total benchmarks, we
elided all the benchmarks that use pointers or arrays, as well as those that took

14 Denis Bueno et al.

more than 30 seconds to pre-process.2 Some static characteristics of these bench-
marks are presented in Figure 7.

ControlFlow ECA Loops

0

100

200

300

400

n
u

m
b

er
of

st
a
te

va
rs

(a) State variables

ControlFlow ECA Loops

0

2

4

6

8

10

n
u

m
b

er
o
f

U
F

s/
U

P
s

(b) Uninterpreted elements

ControlFlowECA Loops

0

2000

4000

6000

8000

10000

12000

n
u

m
b

er
of

d
is

ti
n

ct
ex

p
re

ss
io

n
s

(c) Benchmark size

Fig. 7. Traditional box plots showing quartile ranges and outliers for all benchmark.
Plot (a) shows that the ControlFlow class contains the instances with the most state

variables. The y axis of plot (c) is the number of distinct expressions in T̂ , indicating
that the ECA instances can be huge. In particular, the ECA benchmarks are on average
the largest-size benchmarks; followed by ControlFlow, followed by Loops.

We evaluated euforia against icia [10], an ic-based checker that imple-
ments implicit predicate abstraction. We chose icia largely because it is similar
to euforia, with one essential difference: it uses predicate abstraction instead of
EUF abstraction. Moreover, as pointed out by Cimatti et al. [10], icia is superior
in performance to state-of-the-art bit-level ic implementations as well as other
ic-Modulo-Theories implementations; and it can support hundreds of predicates
(around an order of magnitude more than what explicit predicate abstraction tools
can practically compute). In order to ensure an apples-to-apples comparison, we
run icia on the exact same model checking problem as euforia, by dumping the
model checking instance (transition system and property encoding) into a vmt3

file, which is readable by icia. Currently, euforia only supports llvm bitcode
as input, so our runtime numbers for euforia include the time it takes to re-
encode the transition system and property, but icia does not need to do this;
thus euforia’s numbers are slightly higher than they could be (up to 30 seconds).

Our evaluation sought answers to the following questions:

1. When euforia performs relatively well, why?

2 Note that this is pre-processing time, which is the time to optimize and encode
the instances. The instances that take more than 30 seconds to preprocess are
multi-megabyte source files that come from the ECA set. They are so big that they
time out on both checkers, so we excluded them from our evaluation.

3 https://es-static.fbk.eu/tools/nuxmv/index.php?n=Languages.VMT

euforia: Complete Software Model Checking with Uninterpreted Functions 15

2. When euforia performs relatively poorly, why?
3. Does euforia require more clauses than icia to accomplish verification?
4. How does convergence depth compare?

10−1 101 103

ic3ia

10−1

100

101

102

103

104

eu
fo

ri
a

ControlFlow runtime (s)

10−1 101 103

ic3ia

10−1

100

101

102

103

104

eu
fo

ri
a

ECA runtime (s)

10−1 101 103

ic3ia

10−1

100

101

102

103

104

eu
fo

ri
a

Loops runtime (s)

Fig. 8. Scatter plot of runtimes broken down by benchmark set. Timeout was set to
one hour. Safe benchmarks show with green dots, unsafe with blue x’s.

Figure 8 shows our overall results on all benchmarks compared with icia. eu-
foria and icia are to a certain extent complementary in what they are able to
solve within the timeout. icia uniquely solves 62 benchmarks (17 from Loops and
45 from ECA, none from ControlFlow); all of these benchmark properties are about
arithmetic and euforia gets stuck inferring weak refinement lemmas. The prop-
erties involve things like proving sorting; complex state updates involving division,
multiplication, and addition; and invariants involving relationships between addi-
tion and signed/unsigned integer comparison. These are benchmarks expected to
be tough for euforia, since we have explicitly abstracted these operations in order
to target control properties. We believe this weakness can be addressed through a
refinement algorithm that infers lemmas related to arithmetic facts, such as com-
mutativity or monotonicity. These benchmarks help address research question 2.

euforia’s uniquely solved benchmarks euforia uniquely solves 26 benchmarks;
these cut across the benchmark sets: 9 in Loops, 5 ControlFlow, and 12 ECA. eu-
foria is on average spending only 13 seconds in refinement on these benchmarks,
compared to 767 for icia:

Refinement times on uniquely solved benchmarks

euforia icia (timeout)
average 12.98 766.57
median 0.11 135.95

euforia (timeout) icia
average 937.65 154.27
median 975.41 81.59

On the ControlFlow set (which fits our property target best), euforia solves 5
unique benchmarks and icia solved no uniques. The ControlFlow benchmarks

16 Denis Bueno et al.

have the most state variables, moderate UF/UP use, and are medium-sized. More-
over, euforia requires very little refinement time, supporting our hypothesis that
euforia’s EUF abstraction provides a decent means for targeting control prop-
erties.

Benchmarks both solved Figure 9 shows that, of the 249 benchmarks for which both
checkers terminated, euforia is able to solve the overwhelming majority faster
than icia. Surprisingly, nearly 200 benchmarks among these required no refine-
ments from euforia, as shown in Figure 10. This result is perhaps unexpected be-
cause euforia’s abstraction removes nearly all behavior from program operators,
suggesting that refinement is likely necessary. While much behavior is abstracted,
equality, which is critical for verification, is preserved and some benchmarks simply
need EUF reasoning (i.e., functional consistency), as we’ll see shortly.

10−1 100 101 102 103 104

ic3ia

10−1

100

101

102

103

104

eu
fo

ri
a

Runtime (s)
Benchmarks both solved

Fig. 9. Runtime of euforia and icia
on 249 benchmarks for which both
checkers terminated within an hour.
euforia solves most instances more
quickly than icia.

0 1 2 3 4 5 6 7 8 9-359

refinements

0

50

100

150

200

n
u

m
b

er
of

in
st

an
ce

s
refinements (timeout 3600s)

ic3ia

euforia

Fig. 10. Number of instances grouped
by how many refinements were required
to solve them, on benchmarks both
checkers finished. The key take away
is that euforia is able to solve many
instances with very few refinements.

It is interesting that for some relatively simple arithmetic benchmarks, iciadi-
verges and euforia converges. icia begins inferring predicates like (k = 0), (k =
1), (k = 2), . . .as well as (1 < j), (2 < j), (3 < j), . . . and will continue this until
exhausting all possible values (on 32 bits). A sample program is shown below:

k = i = 0
while i < n do . k = i is invariant

i← i+ 1; k ← k + 1

j ← n . k = j = n
while j > 0 do . k = j is invariant

euforia: Complete Software Model Checking with Uninterpreted Functions 17

assert(k > 0)
j ← j − 1; k ← k − 1

The second while loop’s assertion holds because of the relatively simple property
that (k = j ∧ j > 0) → (k > 0), which also holds in EUF. icia was unable to
discover the relevant predicates, underscoring that choice of predicates is crucial
for predicate abstraction. Several other benchmarks follow a similar pattern.

We hypothesize that euforia can take advantage of certain structure from
the ControlFlow benchmarks. For example, many of the benchmarks implement a
state machine that records its state in an integer state variable. Our abstraction will
keep state machine states distinct, since equality is interpreted and integer terms
are kept distinct. icia on the other hand must learn predicates such as (s = 4),
(s = 5), in order to reason about which state the state machine is in. Indeed, all
predicates that icia learns on this benchmark set are of the form (x = y) where
x is a state variable and y is a constant or a variable; in other words, it learns no
predicates besides simple equalities that euforia preserves intrinsically.

There are several other factors contributing to euforia’s relatively low run-
time on these benchmarks. euforia’s SMT queries are roughly an order of mag-
nitude faster than icia’s, due to the fact that it is reasoning using EUF and not
bit vectors. euforia’s effort spent per lemma is consistently lower than icia’s
effort spent per predicate: the time spent generating each new lemma is up to 10x
faster than icia. icia performs bounded model checking on the concrete system
to extract an interpolant to generate new predicates, which is more expensive than
our approach of examining a single error path and finding an unsatisfiable con-
straint. For larger transition relations, the difference between query times increases
steadily, and the performance advantage of euforia’s EUF reasoning becomes
more evident. This difference comes out in driver benchmarks which implement
several state machines at once. euforia solves these benchmarks one or two orders
of magnitude faster than icia and finds smaller invariants. Both checkers refine
similarly (i.e., number of refinement lemmas/predicates introduced is compara-
ble) but euforia exploits that information much more effectively, as evidenced by
icia requiring roughly an order of magnitude more blocking cubes than euforia.

An interesting outcome of these experiments is that the vast majority of eufo-
ria’s refinement lemmas are one-step lemmas that merely constrain the behavior
of the UFs and UPs in the abstract transition system. In contrast, every new pred-
icate that is introduced by icia doubles the size of the state space (i.e., it goes
from size 2n to 2n+1 when increasing the number of predicates from n to n+ 1).

Figure 11 shows the number of cubes blocked (i.e., clauses added) during solv-
ing. Generally, euforia is able to complete with fewer blocked cubes than icia,
addressing research question 3.

We hypothesized that euforia, due to its abstraction, may require fewer
frames to converge than icia; this is why we asked research question 4. Figure 12
shows the termination depths of euforia and icia. Generally, the termination
depths of both checkers are comparable.

18 Denis Bueno et al.

10−1 100 101 102 103 104

ic3ia

10−1

100

101

102

103

104

eu
fo

ri
a

Number of blocked clauses
Benchmarks both solved

Fig. 11. Number of blocked clauses
during solving for all benchmarks
solved by euforia and icia. Overall,
euforia seems to add fewer cubes.

0 10 20 30 40

ic3ia

0

10

20

30

40

eu
fo

ri
a

depth
Benchmarks both checkers solved

Fig. 12. Frame depth after conver-
gence for both euforia and icia. The
area of the squares is proportional to
the number of different benchmarks
terminating at the given depths.

Overall, euforia performs well on benchmarks testing control properties. In
aggregate, euforia solved 275 out of 752 and timed out on 477. icia solved 311
and timed out on 441.

5 Related Work

Since ic’s advent in 2011 [19], applications and extensions of the basic algorithm
have flourished. Cimatti and Griggio [22] and Hoder and Bjørner [23] presented the
first software model checkers built in ic style. More germane for this paper is how
abstraction has been applied in ic-style solvers. spacer [32] is implemented in
ic style using a Horn clause solver and linear rational arithmetic. It abstracts pro-
grams by dropping elements of the transition relation; it’s a kind of generic abstrac-
tion support, but expressing EUF abstraction under such a model would require a
significant amount of extra constraints (to encode functional consistency). ic has
been adapted to use predicate abstraction, with a couple of different refinement
schemes. ctigar’s [21] refinement is triggered by individual queries during back-
ward reachability. icia’s [10] refinement is triggered whenever an abstract coun-
terexample is found and uses interpolation to derive new predicates. Bjørner and
Gurfinkel [33] integrated polyhedral abstract interpretation with ic to compute
safe convex polyhedral invariants. Our work abstracts using EUF, which is a differ-
ent mechanism from each of these, and is bit-precise in its concrete representation.

Burch and Dill [18] introduced the use of EUF for pipelined microprocessor
verification. For software, Babić and Hu [34, 35] implemented Calysto, a CEGAR
abstraction that uses EUF to abstract away internal function bodies. Calysto com-
putes verification conditions (VCs) and function summaries for all the functions

euforia: Complete Software Model Checking with Uninterpreted Functions 19

in the program. If the abstraction is too coarse to establish the property, Calysto
finds abstract summaries that are responsible for the spurious counterexample,
and refines them by removing EUF terms and making them bit-precise. Our refine-
ment differs in that refinement lemmas are lifted to EUF instead of certain EUF
terms becoming bit-precise; moreover, we do not unroll loops, as Calysto does.

EUF abstraction has been studied extensively, especially for translation vali-
dation and equivalence checking, but not for ic/pdr applied to checking safety
properties; see [12] for further discussion of EUF abstraction. Similar techniques to
ours were developed by Andraus [36] for hardware verification, particularly using
uninterpreted functions for abstracting wide datapaths. In the context of hardware
model checking, Ho et al. [37] abstract difficult operations by turning them into
inputs; they then use EUF to perform refinement of these previously-abstracted
operations. Our work applies directly to software and abstracts uniformly in order
to effectively target control properties.

Predicate abstraction [5] is the dominant technique in control property verifi-
cation, e.g., as used in the tools SLAM [3], BLAST [28], and icia [10]. SLAM’s
approach is to abstract the program into a program on Boolean variables alone,
which preserves control and abstracts data with respect to a set of predicates.
SLAM checks its Boolean program with pushdown techniques using Binary Deci-
sion Diagrams (BDDs). BLAST improves the SLAM scheme; it uses interpolants
to discover relevant predicates locally and these predicates are only kept track of
in the parts of the abstract state space where spurious counterexamples occurred.
SLAM requires an exponential number of calls to the theorem prover in the worst
case (or an approximation to the abstraction [38]). IMPACT demonstrated how
to implicitly compute the predicate abstraction, to avoid this cost [39]. EUF ab-
straction is nearly “free” in that it does not require any calls to a theorem prover.
Moreover, our approach directly abstracts operations as well as predicates, be-
cause we are targeting control properties.

Abstraction in general has been employed extensively to address verifica-
tion complexity [9, 40–42]. Counterexample-Guided Abstraction Refinement (CE-
GAR) was introduced by Kurshan [8] and refined and generalized by Clarke et
al. [9].

6 Conclusions and Future Work

We presented an approach for the automatic verification of safety properties of
programs using EUF abstraction. Our approach targets control properties by ab-
stracting operations and predicates but leaving a program’s control flow structure
intact. EUF abstraction is syntactic; it preserves the structure of the concrete
transition system and can be computed in linear time. We have integrated it with
modern incremental inductive solving and proved that it terminates by produc-
ing a word-level inductive invariant demonstrating safety or a true concrete-level
counterexample.

Our evaluation shows that euforia is particularly effective on control-oriented
benchmarks. In many cases euforia completes without requiring any refinements

20 Denis Bueno et al.

even in the presence of arithmetic operations. In cases where refinement is required,
most refinement lemmas are simply constraints on the abstract transition system
that do not increase the size of the state space. This suggests that EUF abstraction
is a natural over-approximation of program behavior when data state is mostly
irrelevant to establishing the truth or falsehood of the desired safety property.

Going forward, we plan to demonstrate euforia on larger and more diverse
benchmarks. This requires modification to its front-end to add support for pro-
gram constructs such as pointers and arrays, as well as modification to the backend
to support more efficient checking. We also plan to explore how to leverage loop
identification inside the euforia algorithm, specifically during refinement to find
concrete counterexamples longer than the abstract counterexamples.

Some control properties require reasoning about relatively small amounts of
data operations. Often, specific code fragments in a program are critical for verify-
ing the property. It may be beneficial in these situations to modify the refinement
procedure so that such fragments are concretized to avoid generating a large num-
ber of refinement lemmas.

During development, we noticed that the front-end is at times generating code
that is sub-optimal for verification. We found a simple example that contains one
state variable, and uses only assignments of constants and equality tests against
constants. The property requires only equality reasoning and thus should not trig-
ger any refinement. Nevertheless, LLVM’s optimizer transforms this into code that
uses a subtraction, and verifying the property requires a refinement. Moreover, re-
cent work [43] has elucidated some drawbacks of static single assignment (SSA)
form, specifically in its name management and input/output asymmetry. Besides
complicating euforia’s encoder implementation, our SSA-based encoding intro-
duces more state variables and leads to less understandable verification lemmas.
Future work will explore using alternative front-ends tailored for verification.

Acknowledgements We would like to thank Arlen Cox, Shelley Leger, Geoff Reedy,
Doug Ghormley, Sean Weaver, Marijn Heule, and the anonymous reviewers for
their incisive comments on previous drafts. Supported by the Laboratory Di-
rected Research and Development program at Sandia National Laboratories, a
multi-mission laboratory managed and operated by National Technology and En-
gineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell In-
ternational, Inc., for the U.S. Department of Energy’s National Nuclear Security
Administration under contract DE-NA0003525.

References

1. A. Langley, “Apple’s SSL/TLS bug,” https://www.imperialviolet.org/2014/02/
22/applebug.html, 2014, [Online; accessed September 28, 2018].

2. H. Chen and D. A. Wagner, “MOPS: an infrastructure for examining security
properties of software,” in Conference on Computer and Communications
Security, V. Atluri, Ed. ACM, 2002, pp. 235–244. [Online]. Available:
http://doi.acm.org/10.1145/586110.586142

euforia: Complete Software Model Checking with Uninterpreted Functions 21

3. T. Ball and S. K. Rajamani, “The SLAM project: debugging system software
via static analysis,” in Symposium on Principles of Programming Languages,
J. Launchbury and J. C. Mitchell, Eds. ACM, 2002, pp. 1–3.

4. R. E. Strom and S. Yemini, “Typestate: A programming language concept for
enhancing software reliability,” IEEE Trans. Software Eng., vol. 12, no. 1, pp.
157–171, 1986. [Online]. Available: https://doi.org/10.1109/TSE.1986.6312929

5. S. Graf and H. Säıdi, “Construction of abstract state graphs with PVS,” in Computer
Aided Verification, ser. Lecture Notes in Computer Science, O. Grumberg, Ed., vol.
1254. Springer, 1997, pp. 72–83.

6. V. D’Silva, D. Kroening, and G. Weissenbacher, “A survey of automated techniques
for formal software verification,” IEEE Trans. on CAD of Integrated Circuits and
Systems, vol. 27, no. 7, pp. 1165–1178, 2008.

7. S. Lee and K. A. Sakallah, “Unbounded scalable verification based on approximate
property-directed reachability and datapath abstraction,” in Computer Aided
Verification, ser. Lecture Notes in Computer Science, A. Biere and R. Bloem, Eds.
Springer International Publishing, 2014, vol. 8559, pp. 849–865.

8. R. P. Kurshan, Computer-aided verification of coordinating processes: the automata-
theoretic approach. Princeton University Press, 1994.

9. E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith, “Counterexample-guided
abstraction refinement,” in Computer Aided Verification, ser. Lecture Notes in
Computer Science, E. A. Emerson and A. P. Sistla, Eds., vol. 1855. Springer, 2000,
pp. 154–169.

10. A. Cimatti, A. Griggio, S. Mover, and S. Tonetta, “IC3 modulo theories via implicit
predicate abstraction,” in Tools and Algorithms for the Construction and Analysis
of Systems, ser. Lecture Notes in Computer Science, E. Ábrahám and K. Havelund,
Eds., vol. 8413. Springer, 2014, pp. 46–61.

11. Y. Kesten and A. Pnueli, “Control and data abstraction: The cornerstones of
practical formal verification,” STTT, vol. 2, no. 4, pp. 328–342, 2000. [Online].
Available: https://doi.org/10.1007/s100090050040

12. D. Kroening and O. Strichman, Decision Procedures - An Algorithmic Point of
View, ser. Texts in Theoretical Computer Science. An EATCS Series. Springer,
2008. [Online]. Available: https://doi.org/10.1007/978-3-540-74105-3

13. E. M. Clarke, O. Grumberg, and D. E. Long, “Model checking and abstraction,”
ACM Trans. Program. Lang. Syst., vol. 16, no. 5, pp. 1512–1542, 1994.

14. A. R. Bradley and Z. Manna, “Checking safety by inductive generalization of
counterexamples to induction,” in Formal Methods in Computer-Aided Design.
IEEE Computer Society, 2007, pp. 173–180.

15. C. Barrett, A. Stump, and C. Tinelli, “The SMT-LIB Standard: Version 2.0,” in
Workshop on Satisfiability Modulo Theories, A. Gupta and D. Kroening, Eds., 2010.

16. Z. Manna and A. Pnueli, Temporal verification of reactive systems – safety.
Springer, 1995.

17. D. Beyer, M. E. Keremoglu, and P. Wendler, “Predicate abstraction with
adjustable-block encoding,” in Proceedings of International Conference on Formal
Methods in Computer-Aided Design, R. Bloem and N. Sharygina, Eds. IEEE, 2010,
pp. 189–197. [Online]. Available: http://ieeexplore.ieee.org/document/5770949/

18. J. R. Burch and D. L. Dill, “Automatic verification of pipelined microprocessor
control,” in Computer Aided Verification, ser. Lecture Notes in Computer Science,
D. L. Dill, Ed., vol. 818. Springer, 1994, pp. 68–80.

19. A. R. Bradley, “SAT-based model checking without unrolling,” in Verification, Model
Checking, and Abstract Interpretation, ser. Lecture Notes in Computer Science,
R. Jhala and D. A. Schmidt, Eds., vol. 6538, Springer. Springer, 2011, pp. 70–87.

22 Denis Bueno et al.

20. N. Een, A. Mishchenko, and R. Brayton, “Efficient implementation of property
directed reachability,” in Formal Methods in Computer-Aided Design. IEEE, 2011,
pp. 125–134.

21. J. Birgmeier, A. R. Bradley, and G. Weissenbacher, “Counterexample to
induction-guided abstraction-refinement (CTIGAR),” in Computer Aided
Verification, ser. Lecture Notes in Computer Science, A. Biere and
R. Bloem, Eds., vol. 8559. Springer, 2014, pp. 831–848. [Online]. Available:
https://doi.org/10.1007/978-3-319-08867-9 55

22. A. Cimatti and A. Griggio, “Software model checking via IC3,” in Computer Aided
Verification, ser. Lecture Notes in Computer Science, P. Madhusudan and S. A.
Seshia, Eds., vol. 7358. Springer, 2012, pp. 277–293.

23. K. Hoder and N. Bjørner, “Generalized property directed reachability,” in Theory
and Applications of Satisfiability Testing, ser. Lecture Notes in Computer Science,
A. Cimatti and R. Sebastiani, Eds., vol. 7317. Springer, 2012, pp. 157–171.

24. T. Welp and A. Kuehlmann, “QF_BV model checking with property directed
reachability,” in Design, Automation & Test, E. Macii, Ed. EDA Consortium San
Jose, CA, USA / ACM DL, 2013, pp. 791–796.

25. T. Lange, M. R. Neuhäußer, and T. Noll, “IC3 software model checking on control
flow automata,” in Formal Methods in Computer-Aided Design, R. Kaivola and
T. Wahl, Eds. IEEE, 2015, pp. 97–104.

26. D. Kroening, A. Groce, and E. M. Clarke, “Counterexample guided abstraction
refinement via program execution,” in International Conference on Formal
Engineering Methods, ser. Lecture Notes in Computer Science, J. Davies,
W. Schulte, and M. Barnett, Eds., vol. 3308. Springer, 2004, pp. 224–238.
[Online]. Available: https://doi.org/10.1007/978-3-540-30482-1 23

27. T. Ball, E. Bounimova, R. Kumar, and V. Levin, “SLAM2: static driver verification
with under 4% false alarms,” in Proceedings of International Conference on Formal
Methods in Computer-Aided Design, R. Bloem and N. Sharygina, Eds. IEEE,
2010, pp. 35–42.

28. T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre, “Software verification
with blast,” in SPIN, ser. Lecture Notes in Computer Science, T. Ball and S. K.
Rajamani, Eds., vol. 2648. Springer, 2003, pp. 235–239.

29. L. M. de Moura and N. Bjørner, “Z3: An efficient SMT solver,” in Tools and
Algorithms for the Construction and Analysis of Systems, ser. Lecture Notes in
Computer Science, C. R. Ramakrishnan and J. Rehof, Eds., vol. 4963. Springer,
2008, pp. 337–340.

30. A. Niemetz, M. Preiner, and A. Biere, “Boolector 2.0 system description,” Journal
on Satisfiability, Boolean Modeling and Computation, vol. 9, pp. 53–58, 2014
(published 2015).

31. D. Beyer, “Software verification with validation of results - (report on SV-COMP
2017),” in Tools and Algorithms for the Construction and Analysis of Systems, ser.
Lecture Notes in Computer Science, A. Legay and T. Margaria, Eds., vol. 10206,
2017, pp. 331–349.

32. A. Komuravelli, A. Gurfinkel, S. Chaki, and E. M. Clarke, “Automatic
abstraction in smt-based unbounded software model checking,” in Computer
Aided Verification, ser. Lecture Notes in Computer Science, N. Sharygina and
H. Veith, Eds., vol. 8044. Springer, 2013, pp. 846–862. [Online]. Available:
https://doi.org/10.1007/978-3-642-39799-8\ 59

33. N. Bjørner and A. Gurfinkel, “Property directed polyhedral abstraction,” in Verifi-
cation, Model Checking, and Abstract Interpretation, ser. Lecture Notes in Computer

euforia: Complete Software Model Checking with Uninterpreted Functions 23

Science, D. D’Souza, A. Lal, and K. G. Larsen, Eds., vol. 8931. Springer, 2015,
pp. 263–281. [Online]. Available: https://doi.org/10.1007/978-3-662-46081-8 15

34. D. Babic and A. J. Hu, “Structural abstraction of software verification conditions,”
in Computer Aided Verification, ser. Lecture Notes in Computer Science, W. Damm
and H. Hermanns, Eds., vol. 4590. Springer, 2007, pp. 366–378.

35. ——, “Calysto: scalable and precise extended static checking,” in International
Conference on Software Engineering, W. Schäfer, M. B. Dwyer, and V. Gruhn, Eds.
ACM, 2008, pp. 211–220.

36. Z. S. Andraus, M. H. Liffiton, and K. A. Sakallah, “Reveal: A formal verification
tool for verilog designs,” in Logic for Programming, Artificial Intelligence, and
Reasoning, ser. Lecture Notes in Computer Science, I. Cervesato, H. Veith, and
A. Voronkov, Eds., vol. 5330. Springer, 2008, pp. 343–352.

37. Y. Ho, A. Mishchenko, and R. K. Brayton, “Property directed reachability with
word-level abstraction,” in Formal Methods in Computer Aided Design, D. Stewart
and G. Weissenbacher, Eds. IEEE, 2017, pp. 132–139. [Online]. Available:
https://doi.org/10.23919/FMCAD.2017.8102251

38. T. Ball, A. Podelski, and S. K. Rajamani, “Boolean and cartesian abstraction
for model checking C programs,” in Tools and Algorithms for the Construction
and Analysis of Systems, ser. Lecture Notes in Computer Science, T. Margaria
and W. Yi, Eds., vol. 2031. Springer, 2001, pp. 268–283. [Online]. Available:
https://doi.org/10.1007/3-540-45319-9 19

39. K. L. McMillan, “Lazy abstraction with interpolants,” in Computer Aided
Verification, ser. Lecture Notes in Computer Science, T. Ball and R. B.
Jones, Eds., vol. 4144. Springer, 2006, pp. 123–136. [Online]. Available:
https://doi.org/10.1007/11817963\ 14

40. Z. S. Andraus, M. H. Liffiton, and K. A. Sakallah, “Cegar-based formal hardware
verification: A case study,” Ann Arbor, vol. 1001, pp. 48 109–2122, 2008.

41. T. Ball, R. Majumdar, T. Millstein, and S. K. Rajamani, “Automatic predicate
abstraction of C programs,” in Conference on Programming Language Design and
Implementation, ser. PLDI ’01. New York, NY, USA: ACM, 2001, pp. 203–213.

42. K. L. McMillan and N. Amla, “Automatic abstraction without counterexamples,”
in Tools and Algorithms for the Construction and Analysis of Systems, ser. Lecture
Notes in Computer Science, H. Garavel and J. Hatcliff, Eds., vol. 2619. Springer,
2003, pp. 2–17.

43. G. Gange, J. A. Navas, P. Schachte, H. Søndergaard, and P. J. Stuckey,
“Horn clauses as an intermediate representation for program analysis and
transformation,” TPLP, vol. 15, no. 4-5, pp. 526–542, 2015. [Online]. Available:
https://doi.org/10.1017/S1471068415000204

44. R. Bloem and N. Sharygina, Eds., Formal Methods in Computer-Aided Design.
IEEE, 2010.

