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1 Introduction

Relational transition system models have for decades been the bread and butter representation of hard-
ware and software model checking. The VMT format1 provides a means of describing sequential model
checking problems using SMT-LIB-compatible combinational formulas. MathSAT [4], EUForia [3], and
other tools support VMT natively, but unfortunately they do not support Horn clause formats. While it is
well known that linear Horn clauses can be expressed as transition systems, we are not aware of a precise
description in the literature. This paper contributes a procedure, proof of correctness, and prototype im-
plementation for translating linear Horn clauses into VMT. Our procedure is able to convert SV-COMP 2

and SeaHorn [6] benchmarks into VMT for use with various model checkers. Our prototype implemen-
tation will be available at https://github.com/dbueno/horn2vmt.

2 Background

Consider a first-order language with equality with signature S and two common sorts, BOOLs and INTs.
Our language also uses a set of relation symbols R. We say a relation R of arity n = |R| has n places;
each place refers to a dimension of the relation. For instance, in the formula R(1,2), 1 is in the first place
of the relation and 2 is in the second. The semantics of these formulas is standard. A Horn clause or rule
is a universally quantified formula with a body part and a head part:

∀x1, . . . ,xm.
j∧

k=1

Pk(xk)∧φ(x1, . . . ,xm)︸ ︷︷ ︸
body

⇒ head (1)

where for every k, Pk ∈R is an uninterpreted predicate symbol, xk ⊆{x1, . . . ,xm}, and |xk|= |Pk| [8]. The
constraint φ is a formula over interpreted atoms. head must either be an application of an uninterpreted
predicate or an interpreted formula. In this paper, j = 1, which corresponds to linear Horn clauses.

A transition system [5, 2] is a tuple (X ,Y, I,T ) consisting of (non-empty) sets of state variables
X = {x1, . . . ,xn} and corresponding next-state variables X ′ = {x′1,x′2, . . . ,x′n}, a (possibly empty) set of
input variables Y = {y1, . . . ,ym}, and two formulas: I(X), the initial states, and T (X ,Y,X ′), the transition
relation. For every formula σ , the set Vars(σ) denotes the set of state variables free in σ . The X in σ(X)
indicates that the free variables in σ are drawn solely from the set X ; we may omit the argument and

1https://es-static.fbk.eu/tools/nuxmv/index.php?n=Languages.VMT
2https://sv-comp.sosy-lab.org/2020/
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write σ . Prime(σ(X)) stands for the formula σ(X ′), that is, all state variable occurrences are replaced
with primed (i.e., next state) state variables. In this paper, we will also provide a property formula P(X)

that we wish to prove is an invariant of T . We write σ
T−→ ω if each state in σ transitions to some state in

ω under T , i.e., σ ∧T |= ω ′. A transition system execution is a (possibly-infinite) sequence of transitions
σ0

T−→ σ1
T−→ σ2, . . . such that σ0 |= I. Every reachable state occurs in some execution.

3 Translating Horn to Transition Systems

We begin with a motivating example: a program expressed as Horn clauses which we will translate
into a transition system. The program’s Horn clauses are defined over interpreted symbols {<,+} and
relation symbols R = {E,L,M,U}; relations model the program’s control locations and state (see [1] for
program encoding details):

true⇒ E (2)

E⇒ L(0) (3)

∀x. L(x)∧ (x < 5)⇒ L(x+3) (4)

∀x. L(x)∧¬(x < 5)⇒M(x) (5)

∀x. M(x)∧¬(x < 7)⇒U (6)

In order to use a VMT-capable model checker to answer the question, “is the relation U inhabited?”
we show below how to encode Horn clauses (2)–(6) as a transition system A = (X , /0, I,T ) where X =
{`E , `L, `M, `U ,PL,1,PM,1}, I =(¬`E∧¬`L∧¬`M∧¬`U), and T is defined below. The property P=(¬`U).
The variables `E , `L, `M, `U are Boolean relation variables that correspond to the relation symbols in the
Horn clauses. PL,1,PM,1 are integer place variables that correspond to elements inhabiting Horn clause
relations. We use the function π[S]≡ (

∧
x∈S x′ = x) to express that values of variables in S are preserved,

i.e., they don’t change. A’s transition relation T , then, is defined as the disjunction of the following
constraints:

(`′E ∧ π[X \{`E}]) (2*)

(`E ∧ `′L∧ (P′L,1 = 0)∧ π[X \{`L,PL,1}]) (3*)

(`L∧ (PL,1 < 5)∧ `′L∧ (P′L,1 = PL,1 +3)∧ π[X \{`L,PL,1}]) (4*)

(`L∧¬(PL,1 < 5)∧ `′M ∧ (P′M,1 = PL,1)∧ π[X \{`M,PM,1}]) (5*)

(`M ∧¬(PM,1 < 7)∧ `′U ∧ π[X \{`U}]) (6*)

Each disjunct of T corresponds to a single Horn rule; (2*) corresponds to (2), (3*) to (3), and so on. It is
possible in A to reach states (`L∧PL,1 = 0), (`L∧PL,1 = 3), and (`L∧PL,1 = 6)3, meaning {0,3,6} ⊆ L.
Moreover, every reachable state satisfies P, implying that clauses (2)–(6) are not satisfiable.

3.1 General Translation

We now present our general translation from set of n linear Horn clauses over R into a transition system
G = (X ,Y, I,T ) such that a reachability query (i.e., whether a relation is derivable) holds if and only if

3Boldface indicates the only difference among the three formulas.
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a safety property on T fails. Without loss of generality, we assume each Horn clause head is a relation
occurence and that we wish to solve a single query, a 0-ary relation U .4

The states of the resulting transition system are defined over a finite set of state variables X =
{`R | R∈R}∪{PR,i | R∈R,1≤ i≤ k where R has arity k}: Boolean relation variables `R and place vari-
ables PR,i; and fresh primary inputs of the form {Yj,x | 1≤ j ≤ n}, as explained below. Horn clauses are
translated with the help of the syntactic mapping J·K defined over quantifier-free formulas. Let (possibly-
subscripted) e, f ,g,s, t be expressions:

JxK≡ Yi,x quantified variable x occurs in rule i (7)

JR(x1, . . . ,xk)K≡ `R∧PR,1 = Jx1K∧·· ·∧PR,k = JxkK (8)

JF(e1, . . . ,ek)K≡ F(Je1K, . . . ,JekK) for interpreted F (9)

Js = tK≡ JsK = JtK J f ∧gK≡ J f K∧ JgK J¬ f K≡ ¬J f K (10)

During translation, T is treated as a disjunction. For every Horn clause with atom A in its body,
(∀x1, . . . ,xk.A∧φ⇒ head), add the following disjunct to T : JA∧φK∧Prime(JheadK)∧π[X \Vars(head)].
The initial state I = (

∧
`R
¬`R) and the property P = ¬`U . By cases it can be tediously but straightfor-

wardly shown that if a single Horn clause is satisfiable, the resulting transition system has a correspond-
ing satisfying assignment.

3.2 Proof of Correctness

The transition system has the property that the state `R is reachable in T if and only if relation R is
derivable under the Horn clauses.

Direction (⇐): We proceed by induction on the length of the derivation of R. All relations are initially
empty; this is correctly modeled by the definition of I. Length-1 derivations use a single Horn clause
whose body contains no uninterpreted relations with head R. Such a clause translates to a transition that
can be similarly satisfied without relation variables and which also satisfies `′R.

Consider a relation R derivable in n+1 steps. Its last derivation step involves some rule with head R;
by the induction hypothesis, a state satisfying the body of this rule is reachable in T . Examining T and
the definition of J·K allows us to conclude that the next state satisfies `′R.

Direction (⇒): We proceed by induction on the number of transitions. Initially, no relation variable
is reached, due to I’s definition. Next, suppose that I∧T ∧ `′R is satisfied. T guarantees that the body of
the Horn rule corresponding to the transition is satisfied, so R is derivable.

Assume that some state σ ∧`′R is reachable after n+1 steps. By the induction hypothesis, the current
state, which took n steps to reach, has a Horn derivation. The current state corresponds to the body of a
rule with head R, since the only transitions to `′R in T correspond to such rules. Therefore R is derivable.
QED.

Our translation takes linear time and uses space linear in the number of Horn clauses and the relation
symbols. The number of state variables is proportional to the sum of the relation symbol arities. In
addition, an n-step Horn derivation corresponds to an O(n)-length execution.

4If we wish to solve a more complex query, for example P(1,4,x) (for P ∈R), simply modify the Horn clauses as follows:
add a fresh relation symbol U to R and a rule (∀x.P(1,4,x)⇒U).
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